
Cache Optimization in Multicomponent
Unstructured-Grid Implicit CFD Codes

William D. Gropp
MCS Division, Argonne National Laboratory

Dinesh K. Kaushik
CS Department, Old Dominion University & Argonne

David E. Keyes
CS Department, Old Dominion University & ICASE

Barry F. Smith
MCS Division, Argonne National Laboratory

http://www.mcs.anl.gov/petsc-fun3d

Organization of the Presentation

• Understanding the sources of poor
per-processor performance

• Performance issues for unstructured grid
solvers

• Cache and register optimizations
• Conclusions

Motivation

Sequential performance on many machines is a low
percentage of peak
Per-processor performance on T3E stays fairly constant while
going from 128 to 1024 processors
– Parallel programming is easy! It is uniprocessor programming that is

difficult

Memory performance improvement rate (7% per year) is far
behind the CPU performance growth (about 55% per year)
The programmer can do a good job in expressing the coarse-
grained concurrency but getting good cache locality is a big
challenge (especially for unstructured PDE solvers)
Getting good per processor performance is the key to
achieving good parallel performance

Description of PETSc-FUN3D

PETSc-FUN3D is the result of porting FUN3D (developed
by W. K. Anderson, NASA Langley) to PETSc
Tetrahedral vertex-centered unstructured grid code for
incompressible and compressible Euler and Navier-Stokes
equations
1st- or 2nd-order Roe for convection and Galerkin for
diffusion, and false time stepping with backward Euler for
nonlinear continuation towards steady state
Newton-Krylov-Schwarz (fully implicit, matrix free)
solver; the timestep is advanced towards infinity by the
switched evolution/relaxation (SER) of Van Leer and
Mulder
The preconditioner (incomplete LU with zero fill) in each
domain is derived from from 1st-order accurate Jacobian

Per Processor Performance on T3E
Euler flow over an ONERA M6 Wing, on a tetrahedral grid of 2.8 M

vertices, run up to 1024 processors of a 600 MHz T3E

0
10
20
30
40
50
60
70
80
90

100

128 256 384 512 640 768 896 1024

Mflop/s per Processor

Sequential Performance of
PETSc-FUN3D

0
100
200
300
400
500
600
700
800
900

SP2 Origin T3E

Peak Mflops/s Stream Triad Mflops/s Observed Mflops/s

Three Fundamental Limiting
Factors to Peak Performance

Memory Bandwidth
– Processor does not get data at the rate it requires

Instruction Issue Rate
– If the loops are load/store bound, we will not be able to

do a floating point operation in every cycle even if the
operands are available in primary cache

– Several constraints (like primary cache latency, latency
of floating point units etc.) are to be observed while
coming up with an optimal schedule

Fraction of Floating Point Operations
– Every instruction is not floating point instruction

Analyzing A Simple Kernel:
Sparse Matrix Product

• Sparse matrix vector product is important
part of many iterative solvers

• Its performance modeling is easy
• We present simple analysis to predict better

performance bounds (based on the three
architectural limits) than the “marketing”
peak of a processor

Performance Issues for Sparse
Matrix Vector Product

• Little data reuse
• High ratio of load/store to

instructions/floating-point ops
• Stalling of multiple load/store functional

units on the same cache line
• Low available memory bandwidth

Sparse Matrix Vector Algorithm:
A General Form

for every row, i {
 fetch ia(i+1)
 for j = ia(i) to ia(i + 1) { // loop over the non-zeros of the row
 fetch ja(j), a(j), x1(ja(j)), ..… xN(ja(j))
 do N fmadd (floating multiply add)
 }
 Store y1(i) ..… yN(i)
 }

Estimating the Memory
Bandwidth Limitation

Assumptions

Perfect Cache (only compulsory misses; no overhead)
No memory latency
Unlimited number of loads and stores

Data Volume (AIJ Format)

m*sizeof(int) + N*(m+n)*sizeof(double))
 // ia, N input (size n) and output (size m) vectors

+ nz* (sizeof(int) + sizeof(double))
// ja, and a arrays

 = 4*(m+nz) + 8*(N*(m+n)+ nz)

Number of Floating-Point Multiply Add (fmadd) Ops = N*nz
For square matrices,

 (Since nz >> n, Bytes transferred / fmadd ~12/N)

Similarly, for Block AIJ (BAIJ) format

Estimating the Memory
Bandwidth Limitation II

N

nz
n

*
N

124

16 ed/fmadd transferrBytes +

 +=

 ++

 +=

NbN

nz
n

bN
8

*
4*

*
416 ed/fmadd transferrBytes

Performance Summary on 250
MHz R10000

Matrix size, n = 90,708; number of nonzero entries, nz = 5,047,120
Number of Vectors, N = 1, and 4

Bandwidth MFlopsFormat Number of
Vectors

Bytes /
fmadd Required Achieved Ideal Achieved

AIJ 1 12.36 3090 276 58 45
AIJ 4 3.31 827 221 216 120

BAIJ 1 9.31 2327 84 55
BAIJ 4 2.54 635 229 305 175

Prefetching— Fully Use the
Available Memory Bandwidth
Many programs are not able to use the available
memory bandwidth for various reasons
Ideally a memory operation should be scheduled
in each cycle since each cycle is a lost opportunity
Compilers do not do enough prefetching
Implementing and estimating the right amount of
prefetching is hard

Estimating the Operation Issue Limitation
AT:address transln; Br: branch; Iop: integer op; Fop: floating

point op; Of: offset calculation; Ld: load; St: store

for (i = 0, i < m; i++) {
jrow = ia(i+1) // 1Of, AT, Ld
ncol = ia(i+1) -ia(i) // 1 Iop
Initialize, sum1 … ..sumN // N Ld
for (j = 0; j < ncol; j++) { // 1 Ld
 fetch ja(jrow), a(jrow), x1(ja(jrow)), ..… xN(ja(jrow))
 // 1 Of, N+2 AT, and Ld
 do N fmadd (floating multiply add) // 2N Fop
} // 1 Iop, 1 Br
Store sum1… ..sumN in y1(i) ..… yN(i) // 1 Of, N AT, and St

} // 1 Iop, 1 Br

Estimating the Operation Issue
Limitation II

Assumptions:
– Data items are in cache
– Each operation takes only one cycle to complete but multiple

operation can graduate in one cycle
If only one load or store can be issued in one cycle (as is the case on
R10000 and many other processors), the best we can hope for is

Other restrictions (like primary cache latency, latency of floating point
units etc.) need to be taken into account while creating the best
schedule (especially on those processors where software pipelining is
important)

MFlops/sPeak *
Stores and Loads ofNumber

nsinstructiopoint floating ofNumber

Estimating the Fraction of
Floating Point Operations

Assumptions:
– infinite number of functional units
– data items are in primary cache

Estimated number of floating point operations out of the
total instructions:

For N=1, If = 0.18 and N = 4, If = 0.34.

N*(4*nz8)N*(3*m
nz*N*2)(I point work floatingon spent Fraction

N*(4*nz8)N*(3*m)(I completed nsinstructio ofnumber Total

f

t

+++
=

++=

Realistic Measures of Peak Performance
Sparse Matrix Vector Product

one vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120

0
100
200
300
400
500
600
700
800
900

SP Origin T3E Pentium Ultra II

Theoretical Peak
Oper. Issue Peak
Mem BW Peak
Observed

Experimental Performance
Sparse Matrix Vector Product

one vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120

0

50

100

150

200

250

300

SP T3E Ultra II

Oper. Issue Peak
Mem BW Peak
Observed

T3E Performance— A Closer
Look

0

10

20

30

40

50

60

70

80

90

100

Stream On Stream Off

Memory BW Peak
Observed

Implications

• Reducing memory use is critical
– Reuse data items
– Reuse items in cache
– Other memory effects also important (see TLB,

ahead)

• Reducing the number of non-floating-point
instructions is also important
– Reuse items in registers (reduce loads, address

computation)

Enhancing Locality

Choose data layouts that enhance locality at every level of memory
hierarchy
Storage/use patterns should follow memory hierarchy

– Blocks for Registers
• block storage format for multicomponent systems— saves CPU cycles

– Interlaced Data Structures for Cache
• Choose

 u1,v1,w1,p1,u2,v2,w2,p2,…
in place of

u1,u2,… ,v1,v2,… ,w1,w2,… ,p1,p2,…

– Subdomains for Distributed Memory
• “Chunky” domain decomposition for optimal surface-to-volume

(communication-to-computation) ratio

– This hierarchy is concerned with different issues than the algorithmic
efficiency issues associated with the hierarchies of grids

Data Layouts and Reorderings

Edge Reordering
– Sort the nodes at either ends of the edges
– Effectively transforms an edge based loop into a node

based loop
– Enhances temporal locality

Node Reordering
– Bandwidth reducing orderings will reduce the TLB and

cache misses by referring to data items that are close in
memory.

– Our experience is with RCM and Sloan

Locality Enhancing Strategies in
PETSc-FUN3D

Flow over M6 wing with a grid of 22,677 vertices
(90,708 DOFs incompressible; 113,385
compressible)
Turn on each optimization one by one to isolate
the effect of each
Employed the “best” optimization flags
Five Architectures considered: Cray T3E, IBM
SP, Origin 2000, Intel Pentium, and Sun Ultra
Impact of these techniques vary on different
architectures— improvement ranges from 2.5 on
Pentium to 7.5 on SP

Sequential Performance— Time/iteration
SP: IBM P2SC (“thin”), 120 MHz, cache: 128 KB data and 32 KB instr
Origin: MIPS R10000, 250 MHz, cache 32 KB data/32KB instr/4MB L2

Pentium: Intel Pentium II, 400 MHz, cache: 16KBdata/16KB instr/512 KB L2

0
20
40

60
80

100
120
140
160

180

SP Origin Pentium

Base NOER
Interlacing NOER
Blocking NOER
Base
Interlacing
Blocking

TLB Misses:
Measured Values on Origin

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

Base NOER
Interlacing NOER
Blocking NOER
Base
Interlacing
Blocking

Log scale!

Primary Cache Misses:
 Measured Values on Origin

1.00E+08

2.00E+08

3.00E+08

4.00E+08

5.00E+08

6.00E+08

7.00E+08

Base NOER
Interlacing NOER
Blocking NOER
Base
Interlacing
Blocking

Secondary Cache Misses:
 Measured Values on Origin

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

7.00E+07

Base NOER
Interlacing NOER
Blocking NOER
Base
Interlacing
Blocking

Graduated Loads and Stores Per
Floating Point Instruction

1.00
1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00

Base NOER
Interlacing NOER
Blocking NOER
Base
Interlacing
Blocking

Sequential Performance of
PETSc-FUN3D

0
100
200
300
400
500
600
700
800
900

SP Origin T3E

Peak MFlops

Observed
MFlops

Conclusions

The per-processor performance is crucial to get good parallel
performance
Our models predict the performance of sparse matrix-vector operations
on a variety of platforms, including the effects of memory bandwidth,
and instruction issue rates
The achievable “peak performance” for these operations is a small
fraction of the stated peak, independent of code quality

– compiler improvements can help but will not solve the problem

Intelligent prefetching is required to fully utilize the available memory
bandwidth

Data structure transformations (like blocking, interlacing, and edge
reordering) that enhance the temporal and spatial locality in the
memory reference patterns have improved the performance by a large
factor (2.5 on Pentium and 7.5 on SP2).

Future Directions

Design better data structures and implementation strategies
for sparse matrix vector and related operations

Integrate our understanding of the performance issues with
developments in block-structured algorithms to produce
linear and nonlinear solvers that achieve a higher fraction
of peak performance on a per-node basis

Look at important special cases in hierarchical algorithms
where our performance model recommends alternate data
structures and library methods

References

On the interaction of Architecture and Algorithm in the Domain-Based
Parallelization of an Unstructured Grid Incompressible Flow Code
(Kaushik, Keyes, and Smith), 1998, in “Proc. Of the 10th Intl. Conf.
On Domain Decomposition Methods”, J. Mandel et al., eds., AMS, pp.
311-319.

– Cache-aware focus
Newton-Krylov-Schwarz Methods for Aerodynamic Problems:
Compressible and Incompressible Flows on Unstructured Grids
(Kaushik, Keyes, and Smith), 1998, submitted to “Proc. of the 11th
Intl. Conf. On Domain Decomposition Methods”, C.-H Lai et al., eds.

– Multi-platform focus
These can be downloaded from http://www.cs.odu.edu/~keyes

